Multi-scale context for scene labeling via flexible segmentation graph

نویسندگان

  • Quan Zhou
  • Baoyu Zheng
  • Wei-Ping Zhu
  • Longin Jan Latecki
چکیده

Using contextual information for scene labeling has gained substantial attention in the fields of image processing and computer vision. In this paper, a fusion model using flexible segmentation graph (FSG) is presented to explore multi-scale context for scene labeling problem. Given a family of segmentations, the representation of FSG is established based on the spatial relationship of these segmentations. In the scenario of FSG, the labeling inference process is formulated as a contextual fusion model, trained from the discriminative classifiers. Compared to previous approaches, which usually employ Conditional Random Fields (CRFs) or hierarchical models to explore contextual information, our FSG representation is flexible and efficient without hierarchical constraint, allowing us to capture a wide variety of visual context for the task of scene labeling. Our approach yields state-of-the-art results on the MSRC dataset (21 classes) and the LHI dataset (15 classes), and near-record results on the SIFT Flow dataset (33 classes) and PASCAL VOC segmentation dataset (20 classes), while producing a 320 240 scene labeling in less than a second. A remarkable fact is that our approach also outperforms recent CNN-based methods. & 2016 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher-order clique based image segmentation using evolutionary game theory

This paper describes a novel algorithm for labeling problems of image segmentation. Beyond the pairwise model, our proposed method enables exploration on cliques, which are able to capture rich information of the scene. However, the dilemma is that, while our objective is to assign each pixel a label, the cliques are only limited to work on sets of pixels. To address this problem, the interacti...

متن کامل

Hierarchical semantic segmentation of image scene with object labeling

Semantic segmentation of an image scene provides semantic information of image regions while less information of objects. In this paper, we propose a method of hierarchical semantic segmentation, including scene level and object level, which aims at labeling both scene regions and objects in an image. In the scene level, we use a feature-based MRF model to recognize the scene categories. The ra...

متن کامل

Scene parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers

Scene parsing, or semantic segmentation, consists in labeling each pixel in an image with the category of the object it belongs to. It is a challenging task that involves the simultaneous detection, segmentation and recognition of all the objects in the image. The scene parsing method proposed here starts by computing a tree of segments from a graph of pixel dissimilarities. Simultaneously, a s...

متن کامل

Scene Labeling with Contextual Hierarchical Models

Scene labeling is the problem of assigning an object label to each pixel. It unifies the image segmentation and object recognition problems. The importance of using contextual information in scene labeling frameworks has been widely realized in the field. We propose a contextual framework, called contextual hierarchical model (CHM), which learns contextual information in a hierarchical framewor...

متن کامل

Image Categorization Using Scene-Context Scale Based on Random Forests

Scene-context plays an important role in scene analysis and object recognition. Among various sources of scene-context, we focus on scene-context scale, which means the effective scale of local context to classify an image pixel in a scene. This paper presents random forests based image categorization using the scene-context scale. The proposed method uses random forests, which are ensembles of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2016